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Abstract--In this paper a hybrid variant of meta-heuristic 
algorithm ant colony optimization (ACO) is used. Approximate 
solutions to quadratic assignment problem have been proved 
very efficient. Different variants of ant colony optimization 
have been applied to QAP. But in this paper a hybrid 
approach is proposed which is combination of Ant system and 
Max-Min Ant system to take benefits of both the methods. In 
this approach solution construction phase is in accordance 
with Max-Min system and pheromone updation phase is 
according to Ant System. This hybrid approach is 
accompanied by local search         technique. In this paper a 
comparative analysis is done using QAPLIB and it is found that 
results are improved and are comparable with Ant system and 
Max-Min ant system algorithm. 
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I. INTRODUCTION 
        In last few couple of years the Quadratic Assignment 
Problem (QAP) which is one of the hardest optimization 
problems to solve in a reasonable time, has drawn attention 
of various researchers.  
 
 QAP finds a lot of application in real world applications 
such as Facility layout design (Campus planning) [18], 
Electric circuit board wiring (locating modules on the board 
to minimize total wire length) [6], control panel and 
keyboard design (optimized for a language) [6], machine 
scheduling (minimizing average job completion time) [17] 
and many more. Many techniques are proposed to solve 
QAP one of the most famous and efficient technique is Ant 
colony optimization. In this paper we have used ACO to 
solve QAP. 
 
A. Quadratic Assignment Problem  
        The Quadratic Assignment Problem (QAP) was 
originally introduced in 1957 through Tjalling C. 
Koopmans and Martin Beckman [21] has been trying to 
allocate a set of ‘n’ facilities to a set of ‘n’ locations [10]. 
The Quadratic assignment problem (QAP) is associated 
with optimizing the allocation of a set of facilities to a set of 
locations with given flows between the facilities and given 
costs (or distance) between the locations with the objective 
to minimize the sum of the product between flows and 
costs. 

B. The Problem Statement 
     Mathematically, the problem consists of 3, n x n 
matrices as follow: 
D= [dkh] = (n x n) Distance matrix (between site ‘k’ and site   
      ‘h’) 
 F= [fij] = (n x n) Flow matrix (traffic intensity between          
      buildings ‘i’ and ‘j’) 
C= [cik] = is the cost of allocate building ‘i’ at location ‘k’ 
The QAP can be stated as follows: 
         Min ψ ϵ S (n)ൣ	∑ ∑ f	୧୨୬						୩,୦ୀଵ	୬୧,୨ୀଵ dந(୩)ந(୦) + ∑ c	୧୩୬						୧ୀଵ	 ൧				  

1.1 
 

Where S(n) is the set of all possible permutations 
(corresponding to the allocation) and Cik cost of allocating 
facility ‘i’ to location ‘k’ is generally neglected as it does 
not make a considerable contribution to the complexity of 
solving the problem.  
The term f	୧୨	݀ந(௞)ந(௛)  represents the cost participation of 
concurrently allocating building ‘i’ to the site ψk and 

building ‘j’ to the site ψh in the current solution ψ ϵ S (n). A 
tangible illustration would be a planning of departments 
building in University Campus. The problem consists of 
planning the n buildings to n sites on a campus, where dkh is 
the distance from site ‘k’ to site ‘h’, and fij is the traffic 
intensity(flow) between buildings ’i’ and ‘j’. To obtain the 
allocation cost of each possible assignment there are n! 
Ways to allocate them. We multiply prearranged flow 
between each pair of facilities by the distance between their 
assigned locations, and sum over all the pairs. 
The objective is to minimize the total weekly walking 
distance between the buildings. 
For example Table I and Table II shows a QAP with 
problem size n=4. The distance matrix dkh (4 x 4) and flow 
matrix fij (4 x 4). Generally these matrices are asymmetric 
but for simplicity we consider symmetric matrices.     
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Now we assume the possible best permutation among n! is 
ψ= {2, 0, 1, 3} means that the facility ‘2’ is allocate at 
location ‘0’, facility ‘0’ is allocate at location ‘1’, facility 
‘1’ is allocate at location ‘2’, and facility ‘3’ is allocate at 
location ‘3’. Fig. 1 shown below represents the allocation of 
locations to facilities. 
 

       
   
 

  ψ = cost (ψ) = 	∑ ∑ f	୧୨୬						୩,୦ୀଵ	୬୧,୨ୀଵ dந୩	ந୦         
1.2 

 
Cost = (0 x 0) + (60 x 2) + (50 x 4)+(10 x 6) + (60 x 2) + (0 
x 0) + (30 x 1) + (20 x 3) + (50 x 4) + (30 x 1) + (0 x 0) + 
(50 x 5) + (10 x 6) + (20 x 3) + (50 x 5)+ (0 x 0) = 1440  
 

 
Fig. 1 Representing Allocation of Location to Facilities 

The remainder of this paper is organized as follows. 
Section II gives literature review and brief overview of Ant 
colony optimization algorithm for QAP. Section III 
provides a proposed algorithm and local search technique. 
Section IV provides discussion of the computational results 
and parameter setting. Section V provides paper conclusion 
and future scope of this paper. 
 

II. RELATED WORK 
       QAP belongs to the complex combinatorial discrete 
optimization problem. Most of the combinatorial 
optimization problems come under the class of NP-Hard 
problems. To solve large sized problems exact methods are 
not suitable for finding the solution in satisfactory time. In 
order to resolve this problem many approximation 
algorithms are designed called as heuristic and Meta-
heuristic Optimization methods.  
 
A. Exact Methods:  
       The exact methods are used to find the best solution for 
limited size of problems and their computational cost is 
very high for high value of n.(i) Brute Force method, (ii) 
Branch and bound [9], (iii) Cutting planes [8], (iv) Dynamic 
programming [7]. Nystrom [30] in 1999 proposed “The 
branch and bound using tree elaborating strategies” that 
provides the best possible solutions for the QAP problem of 
size 36. 

B. Approximation Methods: 
       Approximation algorithms would be the Method to 
approaching NP-hard problems. Many optimization 
problems are NP-hard problems that cannot be solved in 
polynomial time. To solving optimization problems some 

heuristic algorithms were proposed the obtained solution by 
heuristics algorithms need not be necessary same as exact 
solution but is optimal one which is nearer to best. Heuristic 
methods are further classified into two types a) Meta-
heuristic and b) problem specific heuristic. Meta-heuristic is 
also of two types: Single solution based and Population 
based Meta-heuristic. Heuristic or probabilistic methods 
begin the solution by generating initial random solutions, 
and apply some heuristic approaches to modifying the result 
until the solution found is optimal. Several heuristic 
approaches have been proposed: Greedy Randomized 
Adaptive search procedure (GRASP)[3], Construction 
Methods[5], simulated annealing[13],  tabu search[14], 
genetic algorithms[15,16,17], evolution strategies[4,18], 
scatter search[19] and ant-based algorithms(ant colony 
optimization)[20], particle swarm optimization[19], 
artificial bee colony algorithm[2], differential 
evolution[29], migrating birds optimization[24]. The latest 
and most efficient approach among these is Ant Colony 
Optimization algorithms, has proven itself as one of the best 
performing algorithms for structured, real-life instances.  
Burkard and Rendl in 1984 proposed a heuristic Simulated 
Annealing (SA) approach, the basic idea is comes from 
physical annealing process in industries, “Simulated 
Annealing” mean annealing of metal on high temperature, 
cooling a metal progressively in a specified time schedule. 
In QAP the initial solution, then generate annealing 
parameters (temperature, number of iteration, termination 
condition), update temperature, generate neighbors to select 
next solution and apply local search to optimize the 
acceptable results. 
Glover & Lagunna in (1989-90) proposed Tabu search to 
guide the search process which is integrated with several 
heuristic and metaheuristic algorithm to avoid local optima 
problem.  
Birattari M., Dicaro G. and Dorigo M. (1991) proposed 
metaheuristic algorithm called “Ant Colony Optimization” 
is inspired by the real nature of ants and their foraging 
behavior in finding the shortest path from their nest to 
food[1]. Several variants of ACO algorithms proposed for 
solving QAP, such as the Ant System [20] (Dorigo et al., 
1996), ACO with elitist ants [20](Dorigo M, 1999), the 
Max-Min Ant System(MMAS) [21] (Stützle & Hoos, 
2000), ANTS[27] (Vittorio Maniezzo , Colorni, 1999), and 
Hybrid Ant System[25](HAS). The main difference 
between them is the pheromone updating process during 
solution construction by individual ants. 
 

1) Ant Colony Optimization Algorithm: ACO algorithms 
which are based on population based search method are 
motivated by the behavior of real ants looking for food 
from the source selects the shortest path. To apply ACO the 
problem must be represented in a graph as G(S, L) where S 
is the sets of states and L is the sets of connection to every 
connected state. To construct solution, ants randomly travel 
on the graph and they leave some amount of chemical 
substance called pheromone on the visited edges. This 
pheromone attracts other ants to follow same path and find 
the solution after few iterations.  
 

Facilities  → 
Locations  → 

2 0 1 3 
0 1 2 3 
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General framework for ACO: 
Set parameters & initialize pheromone trails 
while (end-condition = false) do 
    1. Construct_Ant_Solutions 
    2. Apply LocalSearch(optional) 
    3. Update Pheromone 
end while 
In the solution construction, each ant initially construct 
their solution for the given problem using probabilistic rule 
which uses pheromone and heuristics   information to 
decide the choosing the next component in the graph. 
In the pheromone update, each ant deposits the few amount 
of pheromone to their constructed solution. The last phase, 
local search which is optional, which is used to improve the 
result and it has several types such local search techniques 
used such as neighborhood iterative exchange, 2-opt local 
search and tabu search. 

C. Ant System for QAP 
First initialize the pheromone trails and heuristic 
information and control parameters.  

1) Solution construction: In the main loop, each ant 
constructs feasible solutions, and then improves the solution 
using local search and the pheromone trails are updated. In 
solution construction each ant ‘k’ randomly selects 
unassigned facility ‘j’ to an available location ‘i’ according 
to a probabilistic rule specified as follows.  

௜௝௞݌       (ݐ) = ൣఛ೔ೕ(௧)൧ഀൣఎ೔ೕ(௧)൧ഁ∑ ൣఛ೔ೕ(௧)൧ഀൣఎ೔ೕ(௧)൧ഁ೗ചಿ೔ೖ 									݂݅	݆߳ ௜ܰ௞                   

1.3    
Where ௜ܲ௝௞(ݐ) is the probability of ant ‘k’ to assigned the 
facility ‘j’ to location ‘i’ at iteration ‘t’ and τij(t) is the 
chemical pheromone trail of the assignment, indicating how 
profitable it has been in the past to make that particular 
assignment at iteration ‘t’, ηij(t) is the attractiveness of 
assigning the facility ‘j’ to location ‘i’ at iteration t referred 
as heuristic information, indicating a priori desirability of 
that assignment. Thus, more the value of the pheromone 
content and the heuristic information, the more it will be 
beneficial to choose that assignment in order to reach 
feasible solution.  
 

2) Pheromone update: each ant ‘k’ evaporate the 
pheromone for all assignment of location and facility (τij) as 
(1- ρ) where ρ is (0 < ρ < 1), and using the equation below 
pheromone updation is done by every ant. 
 

       ߬௜௝(ݐ + 1) = .	ߩ ߬௜௝(ݐ) +	∑ ∆߬௜௝௜௝௞௠௞ୀଵ            1.4 

Where ρ is the pheromone evaporation rate which is used to 
reduce the effect of previously done bad assignment by any 
ant, m is the number ants and ∆τ	୧	୨୩  is the amount of 
pheromone added by the ant ‘k’ on the coupling of (i, j) as 
given by: 

        ∆τ	௜௝௞   = ቊ ொ௙(ట)࢑ 	if	facility	j	is	assigned	on	location	i		0, ݁ݏ݅ݓݎℎ݁ݐ݋																																														  

Where, ψ୩ represent kth ant permutation and  f(ψ)୩ is the 
cost of the permutation and Q is the fixed quantity of 
pheromone deposited by ant. 

D. MAX MIN Ant System 
Max-Min ant system (MMAS) is modified from traditional 
ant system (AS) in various aspects as, 
1.  In every iteration, only the ant having best solution is 

allowed to update pheromone, best ant can be iterative 
best or global best. 

2. To avoid search stagnation the pheromone quantity is 
limited within the specified range [τ min, τmax], that is 
pheromone should be within interval [τ min ≤ τij ≤ τmax]. 

MMAS does not use any heuristic information because of 
the construction solution by each ant is improved by local 
search technique. MMAS algorithm comprises of following 
phases: 
Solution construction: In each iteration of solution 
construction every ant ‘k’ randomly chooses an unassigned 
location ‘i’ and then place an available facility j based on 
the following probabilistic rule as: 											݌௜௝௞ (ݐ) = ఛ೔ೕ(௧)∑ ఛ೔೗(௧)೗ചಿ೔ೖ 									݂݅	݆	߳	 ௜ܰ௞  1.5 

1) Pheromone update: After all the ants of single 
iteration have completed the assignment than pheromone is 
evaporated with the same concept as the pheromone is 
evaporated in Ant system. 									τ୧୨(t + 1) = ρ. τ୧୨(t) + ∆τ୧୨ୠୣୱ୲    1.6 

Here, ∆τ	௜௝௕௘௦௧  is defined as 
∆τ	௜௝௕௘௦௧  =ቊ ொ௙(ట)࢑ 	if	facility	j	is	assigned	on	location	i	in	solution	ψ୩				0, ݁ݏ݅ݓݎℎ݁ݐ݋																																														  

Where ݂(߰)࢑ is the cost of solution ψ୩ of kth ant. In 
MMAS-QAP the	ψ୩	is might be either best of the current 
iterations solution or the global best cost of the solution and 
Q is the constant amount of pheromone deposited by an ant. 
 

III. HYBRID ANY SYSTEM FOR QAP 
       In this paper the proposed hybrid ant system algorithm 
with 2-opt iterative local search. This algorithm has adopted 
the basic concept of population based ant system algorithms 
and Max-Min Ant system with some improvement and 
apply 2-opt iterative local search. 
Consider a Graph G(C, L) where C= components are the set 
of facilities and Locations and L= connection between 
components are set of flow and distance of facilities and 
locations respectively. Constraints, each ant build their 
feasible solution randomly such as every facility is 
allocated to exactly one location and every location allocate 
to exactly one facility. Feasible solution ψ consists of n 
pairs (i, j) of facilities and locations. Assumption: before 
the start the solution construction the allocation order is 
fixed in way of allocation facilities to the locations. In this 
proposed algorithm the allocation order is fixed by each ant 
by randomly selecting an unassigned location and using 
probability rule to assigns it to an unassigned available 
facility. 
In the algorithm each artificial “ant” has the following 
abilities: 
1. If a facility ‘j’ is assigned to location ‘i’ the ant will lay 

a pheromone on the pair (i, j). 
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2. To keep an account of allocated facility to location, 
each ant has a vector of problem size which stores the 
assigned facilities. The index of the vector indicates the 
location number and the element at that index on the 
vector represent the facility number. 

3. For each, new iteration the vector which is associated 
with every ant must be empty and ant now again 
constructs the allocation and stores the order in their 
respective vector. 

 
Algorithm HAS  
1. Initialize parameters: 
      Rho (ρ), Q, max-Iterations, alpha (α), Pheromone 

matrix (τij=1) and read the flow and distance matrix 
separately in two distinct n x n arrays. 

2. Each ant initially generates their solution using Fisher-
Yates-Shuffle and roulette wheel selection algorithm. 

3. Find the best ant solution and their cost and store for the 
further used in iterations. 

4. Locate  m ants at first location 
5. While(iteration<max-Iteration) do 
6.     Each ant construct solution ψk (1≤ k ≤ m) do 
7.       For each location ant k randomly select a                     
          Unassigned location 'i (1≤ i ≤ n)          
            Allocate a facility j (1≤ j ≤ n) from N (k)            
            on the location i with a probability  

                            ௜ܲ௝௞  = 
ijτ (௧)∑ ijτ (௧)ೌഄಿ(ೖ)  

  
             Facilities of ant ‘k’. 
     End for 
8. Improve the constructed solution of each ant k using 2-

opt iterative local search 
9. Update the global pheromone matrix as 

i. First evaporate the pheromone  
τij (t+1)=(1 – ρ) * τij (t)  for all pair(i, j) 

         ii.   All ants k deposit the pheromone on those pair (i, 
j)          

                where ant k is assigned the facility j on location i 
as: 

τij (t+1) = τij (t+1) +  ∑ ∆୫୩ୀଵ τ	୧	୨୩  

     Where ∆τ	୧	୨୩  is the amount of pheromone ant k   deposit 
on the pair (i, j) as: 

∆τ	௜௝௞   = ቊ ொ௙(ట)࢑ 	if	facility	j	is	assigned	on	location	i		0, ݁ݏ݅ݓݎℎ݁ݐ݋																																														  

     Where, f(ψ)୩ is the cost of ant k solution in the current 
iteration. 

10.  After update pheromone set the limits of pheromone on 
each pair of facility and location to avoid search 
stagnation as below.  

If τ	୧	୨୩  < 0.0001    then 		τ	୧	୨୩ = 0.0001 

if  τ	୧	୨୩  > 100000 then 				τ	୧	୨୩ = 100000 
11. Find the best permutation and its cost among k ants. 
12. If (iteration best cost < best cost so far) than 
13. Set: Best cost  so far = iteration best cost 
14. End while 
16. Apply local search on the final best permutation and 
print   

       the final cost and permutation. 
       End algorithm 

A. Local search for the QAP 
In the proposed HAS algorithm we have use a 2-opt 

iterative Local search procedure is applied on the 
permutation to improve the obtained permutation. It 
explores all the neighborhood n (n-1)/2 possible swaps 
using move cost [22] where n is the problem size. The 
move cost for neighborhood n (n-1)/2 pairs of facility ‘i’ 
and ‘j’   in the permutation are computed as Delta (ψ, i , j)  
 
Algorithm for local search 
moveCost(permutation, flow matrix, distance matrix) 
{ 
   For i = 0 to n do { 
      For j = i+1 to n   do { 
          Delta[i][j] = (a[i][i] - a[j][j]) * (b[p[j]][p[j]] -          
                                 b[p[i]][p[i]]) + (a[i][j] - a[j][i]) *  
                                 (b[p[j]][p[i]] - b[p[i]][p[j]]); 
   For (k = 0; k < n; k = k + 1) 
    {   If (k! = i && k! = j) 
            Delta[i][j] += (a[k][i] - a[k][j]) * (b[p[k]][p[j]] –  
          b [p[k]][p[i]]) + (a[i][k] - a[j][k]) *  
                                    (b [p[j]][p[k]] - b[p[i]][p[k]]); 
    } 
   If (Delta[i][j] < 0) 
        Swap (ψ, i , j); 
 }  } 
Where p= permutation, a=flow matrix and b= distance 
matrix. 
If (Delta[i][j] < 0) than swap (ψ, i, j) otherwise no changes. 
Means if the move cost  is negative than exchanging the 
facility at index ‘i’ with index ‘j’ has the cost is less than 
before computed cost at location ‘i’ and ‘j’ in ψ. Local 
search compute all neighborhood move cost is of 
complexity O(k*n2). 
  

IV. EXPERIMENTAL RESULTS 
According to the instances of QAPLIB problem can be 
classified in four categories of instances: 
1. Unstructured, randomly generated instances: In this 
category of instances are generated randomly according to 
consistent allocation (instances Taixxa) for distance and 
flow matrix. 
2. Unstructured instances with grid-distance: In this 
category of instances with the distance matrix defined as 
the Manhattan distance between grid points on n1 x n2 grid 
and with random flow. 
3. Real-life instances: In this category of instances from 
practical applications of the QAP. 
4. Real-life like instance: In a QAPLIB real life instances 
mainly have a small size, so for big size of real life 
application of QAP the instances in this category are 
randomly generated in such a way that the matrix entries 
resemble the distribution found in real life problems 
(instances Taixxb). 
In this section the results obtained from HAS (Hybrid Ant  
System) has been compared with Improved MMAS with 2-
opt  
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local search (called New MMAS) [26] and Improved 
MMAS with Tabu search (called New MMAST) [26]. 
In Table1 proposed HAS algorithm has performed best 
results; the best results are shown in bold font. Table2 

shows Comparative analysis of Ant System [27] and 
population based Hybrid Ant System (PHAS) [28] with 
proposed hybrid Ant system algorithm (HAS). 
 

 
TABLE III 

Experimental Results for Improved MMAS with 2-Opt Local Search (Called New MMAS) [26] and Improved MMAS with Tabu Search (Called New 
MMAST) [26] Compare with Proposed Hybrid Ant System Algorithm (HAS). 

Problem 
Name 

Size 
N 

Best Known 
cost 

New-
MMAS 

New 
MMAST 

Number of 
Ants 

Cost of 
HAS 

RPD 
% 

Unstructured Random generated instances 
Tai25a 25 1167256 1.381 0.665 35 1167256 0 
Tai30a 30 1818146 1.228 0.657 50 1825384 0.398 
Tai35a 35 2422002 1.633 1.029 50 2456836 1.438 
Tai40a 40 3139370 1.733 1.288 40 3191706 1.66 
Tai50a 50 4938796 2.027 1.629 50 5022456 1.693 
Tai80a 80 13499184 NA NA 80 13848642 2.588 

Grid based distance matrix 
Nug25 25 3744 0.060 0 25 3744 0 
Nug30 30 6124 0.276 0.133 30 6124 0 
Sko42 42 15812 1.135 0.405 52 15842 0.189 
Sko49 49 23386 1.111 0.501 49 23436 0.213 
Sko56 56 34458 1.238 0.558 56 34624 0.481 

Real life instances 

Chr25a 25 3796 3.934 4.284 25 3866 1.844 
Kra30a 30 88900 NA NA 50 88900 0.0 

Kra30b 30 91420 0.125 0.056 30 91580 0.175 

Ste36b 36 15852 0.137 1.019 36 15892 0.252 
Bur26a 26 5426670 0.027 0.049 26 5426670 0.0 

Real life like instances 
Tai25b 25 344355646 0.009 0.018 25 344355646 0.0 
Tai30b 30 637117113 0.003 0.392 40 637117113 0.0 
Tai35b 35 283315445 0.085 0.208 35 283611793 0.1046 
Tai40b 40 637250948 0.035 0.388 50 637307091 0.0088 

Tai150b 150 498896643 NA NA 150 505087945 1.24 

 
TABLE IV 

Experimental Results Comparison by Ant System [27] with Proposed HAS. 

Problem 
Name 

Size 
N 

Best known 
cost 

ANT cost % 
RPD 

PHAS % 
RPD 

Number of Ant in 
HAS 

Cost of 
HAS 

RPD 
% 

Chr15c 15 9504 NA 6.355 15 9504 0.0 

Chr20b 20 2298 2.79 4.96 20 2298 0.0 

Lipa30a 30 13178 0.0 NA 30 13178 0.0 

Lipa40a 40 31538 1.02 NA 40 31704 0.526 

Ste36a 36 9526 0.76 0.251 36 9550 0.251 

Bur26b 26 3817852 0.0 0.0 26 3817852 0.0 

Els19 19 17212548 NA NA 19 17212548 0.0 
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Fig. 2 Graph representing comparison of New-MMAS and HAS in 

terms of RPD for different Problem instances. 

Table1 shows that the proposed HAS algorithm perform 
better performance for all four type categories problem 
except some problem from unstructured randomly 
generated instances category. Table2 shows that the 
proposed algorithm obtained better results than compared 
algorithms. We obtained best result for problem chr15c, 
chr20b and kra25a.  

 
Fig. 3 Graph representing comparison of New-MMAST and HAS in 

terms of RPD for different Problem instances. 

A. Parameter setting 
Suitable parameter setting for HAS was determined by 
preliminary experiments on different type of problems. The 
parameters are test over 10 times run for getting best result 
for indivisible problem. The number of ants used is equal to 
problem size (m = n) and pheromone evaporation rate ρ is 
problem dependent (0.05, 0.07, 0.08) and Q=1. The number 
of iteration for local search is 3. Table1 represent the 
Relative Percentage Deviation (RPD) from the best known 

cost, the calculation of RPD = 
୞ି୞(ୠୣୱ୲)୞(ୠୣୱ୲) ∗ 100, where Z is 

the cost of the proposed algorithm and Z(best) is the best 
known cost of the problem. 
   The proposed algorithm is implemented in Microsoft 
visual C# and all the experiments were tested on Intel(R) 
Pentium(R) CPU G620 @ 2.60 GHz with 2 GB RAM and 
Windows7 (32 bit) Operating System. 

V. CONCLUSION AND FUTURE WORK 
In this paper hybrid ant system is proposed which is 
accompanied by 2-opt local search technique.  
It is then compared with improved Max-Min ant system 
(MMAS) with 2-opt local search (new MMAS) and 
improved MMAS with tabu search (new MMAST) and 
results are found improved over these two algorithms for all 
the specified categories of test cases except some problem 
instances of large size which comes under Unstructured 
Random generated instances for new MMAST. In future a 
hybrid parallel implementation for the proposed algorithm 
will be proposed and some other variant of ACO combined 
with different local search techniques will be compared and 
proposed for solving QAP. 
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